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Abstract : Heart rate variability (HRV) refers to variations in heart complex wave beat- to-beat intervals. The 

HRV is a reliable reflection of many physiological, psychological, and environmental factors modulating the 

normal rhythm of the heart. In fact, the HRV seriously provides a powerful means of observing the interplay 

between the sympathetic and parasympathetic nervous systems. However, the HRV has a periodicity that is 

important for monitoring and following up the cases. The structure generating heart complex wave signal is not 

simply linear, but it also involves nonlinear contributions. These contributions are totally correlated. .  

The HRV is stochastic and chaotic (stochaotic) signal. It has utmost importance in heart diseases diagnosis, and 

it needs a sensitive tool to analyze its variability. The present work introduces and discusses some methods to be 

used for analysis and prediction of HRV. Also, explain a novel reliable methods to analyze the linear and 

nonlinear behaviour of the heart complex wave variability, to assess the use of the HRV as a versatile tool for 

heart disease diagnosis. The Mazhar-Eslam Variability Frequency MVF "ΩM"is the most versatile tool for HRV 

prediction and diagnosis that discussed in this thesis. The MVF "ΩM" diversity of initially closely trajectories in 

state-space is connected with folding of them. The presence of a positive part MVF for all initial conditions in a 

restricted dynamical system, is the vastly used definition of deterministic chaos. Thus, to distinguish between 

periodic signals chaotic and dynamics, the MVF ΩM are predominantly used. The trajectories of chaotic signals 

in state-space pursue typical patterns. Nearly diverge trajectories diverge and converge exponentially, 

proportional to each other. A negative MVF means that the orbit entices to a settled point or stable periodic 

orbit. Negative MVFs are distinguishing of non-fogyish systems. Like systems display asymptotic stability. For 

more stability, the MVF is more negative. When MVF tends to infinity, it is mean the excessive stable 

periodicity. Thus, it is clear that the MVF is the most suitable and sensitive tool for predicting the HRV. 

Morever, it discusses the Poincare limitation, cause of standard deviation SD1, SD2 and how to overcome this 

limitation by using complex correlation measure (CCM). The CCM is most sensitive to changes in temporal 

structure of the Poincaré plot as compared toSD1 and SD2. 

Keywords : Linear methods, Nonlinear methods, Heart Rate Variability (HRV), Poincaré Plot, Mazhar-Eslam 

Variability Frequency (MVF). 

 

I. INTRODUCTION 
Heart rate variability (HRV) is define as the inter-beat variability between successive heart beats in a 

determined time interval. This variability is mediated directly by polarization and depolarization process of 

sinus node. Which at the same time is regulated by interaction of the sympathetic and parasympathetic branches 

of autonomic nervous system (ANS). An increase in the parasympathetic activity means decreasing in heart rate 

(HR) by release of acetylcholine, however, an increase of HR is a direct consequence of an increase in the 

sympathetic activity which in this case is mediate through norepinephrine release on heartbeat regularity 

mechanism [1, 2, 3]. So, it can be established that the dynamical balance between sympathetic and 

parasympathetic activity has strong effect on HR causing vibration around its average value which called HRV 

phenomenon. Thus, HRV is a noninvasive method to evaluate the sympathetic and parasympathetic function of 

ANS and cardiovascular system [1]. Figure 1 explain the effect of sympathetic and parasympathetic system on 

HR beside the outcome of their interaction. 

 

II. GENERATION OF HRV SIGNAL 
The heart rate variability (HRV) signals are result of quantifying the distance between successive 

heartbeats for certain period of time. These periods are estimated by analyzing the electrocardiography (ECG) 

signals. Practically, the R peak method is the most accurate to identify the all QRS complexes of ECG signal 

cause of its proficiency in distinguish from other component of complex. Thus, there are several methods for 

detecting R peaks, some of them based on Hilbert transform [4], signal filtering (pan-tompkins algorithm) 

[2,3,5], pattern recognition [6], and wavelet transform [7]. Although the accuracy of these methods, there is no 

standard methodology of R peak detection. 
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With all R peaks detected, the next step is calculating the difference time between two successive R 

peaks in order to generate a time series of R-R intervals. After calculation these defrences for the entire signal, 

the obtained result is a discrete time series called as RR tachogram or HRV signal [3]. It is important to note that 

this series of variability lacks uniformity in the distance between the points due to temporary differences 

between successive heartbeats. Figure 2 represents the R-R time series generating from ECG signal [2, 3]. 

 

 
Figure 1. The effect of sympathetic and parasympathetic system on HR 

 

 
Figure 2. R-R time series generating from ECG signal 

 
III. ASSESSMENT OF THE HRV SIGNAL 

The HRV analysis is performed through a combination of linear and nonlinear method. Linear methods 

have been categorized as methods in time domain and methods in frequency domain, while nonlinear methods 

correspond to a set of techniques to study the nonlinear dynamics of HRV series. 

 The analysis in time domain is the simplest way to extract features of HRV signals by quantifying 

some indexes based on the statistics of signal data. They are the average value of all R-R intervals (AVRR), 

standard deviation of all R-R intervals (SDNN), root mean square differences of successive R-R intervals 

(rMSSD), and percentage of differences between N-N intervals that by more than 50ms (pNN-50).  It is 

important to state that previous studies have shown that these time parameters are highly correlated with high 

frequency variation in HR[2]. 

 HRV signals exhibit an oscillatory behavior in that components of high and low frequency as a result 

of cardiovascular modulations performed by sympathetic and parasympathetic nervous systems are mixed. 

Thus, methods of analysis in the frequency domain are used in order to quantify this type of information from 

estimate the power spectrum as a function of signal frequencies. The calculation of the power spectrum of the 
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power spectrum density (PSD) of HRV signal can performed using parametric and nonparametric methods. 

Parametric methods usually estimate power spectrum through autoregressive models applied to the signal. But, 

nonparametric methods using algorithm based on Fourier transform. However, these methods require that the 

input signal will be evenly sampled. It means that all samples will be equally spaced in time. Then, in order to 

fulfill this requirement, it is necessary to perform a process of resampling on the R-R series before the spectral 

estimations. For HRV series, it is recommended to construct a cubic spline interpolation over the data using a 

resampling frequency [3]. To avoid resampling process over the HRV signals and obtained PSD estimated 

directly from unevenly data, the algorithm proposed by Lomb [8] and Scargle [9] can be used. Once the PSD is 

estimated, it is possible to quantify reliable information in the frequency domain integrating the spectrum in 

frequency bands. Three frequency bands, related to some physiological phenomena, have been considered as a 

standard values in the frequency analysis of HRV [2, 10, 11, 12]. The values of these frequency bands 

correspond to (VLF) band in the range (0.01-0.05 Hz), the second band is low frequency (LF) band in the range 

(0.06 -0.15 Hz) and the third band is a high frequency (HF) band in the range (0.16-0.50 Hz) as illustrated in 

figure 3. 

 

 
Figure 3. HRV spectrum bands 

  

In addition to the methods of analysis in the time and frequency domain, there are nonlinear methods 

which have been demonstrated to extremely useful due to the nonstationary characteristics of HRV signals. 

Most of these methods have their foundation in chaos theory and nonlinear dynamics which allows to analyze 

HRV signals in more complete way. The most commonly used nonlinear methods for HRV analysis are slope of 

regression line, Fractal dimension, Detrended Fluctuation Analysis (DFA), Approximate entropy (AppEn), 

sample entropy (SampEn), Correlation dimension (CD), Hurst exponent (H), Recurrence plots, Lyapunov 

exponent, PoincaréPlots, and Mazhar-Eslam Variability Frequency [3]. In the next, discussion of the most 

important and sensitive tools for heart disease diagnosis which are PoincaréPlots, and Mazhar-Eslam Variability 

Frequency.  

 

IV. POICARÉ PLOT 
The Poincaréplot analysis is a geometrical and non-linear method to assess the dynamics of heart rate 

variability (HRV). The Poincaréplot is a representation of a time series into a phase space, where the values of 

each pair of successive elements of the time series define a point in the plot. The theoretical background that 

supports the use of a phase space is the Takens theorem [13]. According to Takens, it is possible to reconstruct 

the attractor of a dynamical system by mapping a scalar measurement into a phase space using a given time 

delay and embedding dimension [14]. T 

hePoincaréplot in HRV is a scatter plot of the current R-R interval plotted against the preceding R-R 

interval. It was constructed at a period of intervals before, for example 5 minutes. This method is described by 

the following formula: Two adjacent RR intervals represent one point in the plot. The first RR interval (RR i) 

represents the x-coordinate, the second interval (RR i+1) represents y-coordinate. Figure 4 shows a Poincaréplot 

of a healthy patient. However, the assessment and standardization of these qualitative classifications are difficult 

because they are highly subjective. A quantitative analysis of the HRV attractor displayed by the Poincaréplot 

can be made by adjusting it to an ellipse. For the performance analysis, the SD1 (Standard Deviation1), SD2 

(Standard Deviation 2) and area of ellipse are used as evaluation parameters [14]. The definitions are given in 

the next: 
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Figure 4.Poincaréplot of a healthy patient 

i. SD1: Standard Deviation 1 

Is the standard deviation (SD) of the instantaneous (short term) beat-to-beat R-R interval variability 

(minor axis of the ellipse or SD1). SD1 can be calculated as: 

𝑆𝐷1 =  𝑣𝑎𝑟(𝑥1)  

       

ii. SD2: Standard Deviation 2 

Is the standard deviation (SD) of the long term R-R interval variability (major axis of the ellipse or SD2). SD2 

can be calculated as: 

𝑆𝐷2 =  𝑣𝑎𝑟(𝑥2)  

         

wherevar(x) is the variance of variable x, and 

𝑥1 =
𝑅𝑅𝑖        −𝑅𝑅𝑖+1              

 2
           

𝑥2 =
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iii. Area of Ellipse (S) 

Is the amount of area covered by the ellipse. It can be calculated by doing the product of π, SD1 and SD2 as: 

𝑆 = 𝜋 . 𝑆𝐷1 . 𝑆𝐷2          

The next example of calculations for Poincarédepend on the ECG signals of healthy and patient 

subjects taken from fantasia database as shown in Table 1 and Table 2. The SD1 and SD2 are in ms. 

 

Table 1. SD1 and SD2 of Patient Person 

Case SD1 SD2 S 

1 32.9287 120.0742 12415.2062 

2 21.8979 61.7105 4243.17732 

3 25.2745 52.9018 4198.3885 

4 21.3007 33.9414 2270.14332 

5 15.7004 79.8127 3934.70673 

6 23.2662 66.9031 4887.66404 

 

 

 



Nonlinear Versatile Tools For Heart Rate Variability Prediction And Diagnosis 

www.ijres.org                                                                12 | Page 

 

Table 2. SD1 and SD2 for Normal Person 

Case SD1 SD2 S 

1 45.4924 117.4879 16782.69254 

2 52.8311 133.4969 22145.75455 

3 36.8274 126.5634 14635.54300 

4 96.0846 268.1668 80907.43709 

5 78.8477 159.1354 39399.02527 

6 39.0706 138.8992 17040.38776 

 

From Table 1 and Table 2 it is clear that, the Poincaréin normal case represent the statistical value 

bigger than in diseases case. The Poincaréplot in HRV is widely used to detect and monitoring many important 

and critical diseases especially in the congestive heart failure (CHF) and cancer cause of its sensitivity. 

 

 
Figure 5.Poincaréplot from a 5 min record of ECG signal from before tilt in a healthy person 

 

.  

Figure 6.Poincaré plots with similar SD1 and SD2 having different temporal dynamics. Two different 

RR interval time series of length N (N = 2000) with similar SD1 and SD2 values having different temporal 

dynamics (first 20 points) are shown in top and bottom panel [15]. 
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The typical shape of a Poincaréplot is an elongated cloud of points around the line-of identity as shown 

in figure 5. 

Although the Poincaréis useful visual pattern for HRV, it has limitations. The primary limitation of the 

standard descriptors used for quantifying Poincaréplot is the lack of embedding temporal information. The 

standard deviations, SD1 and SD2, represent the distribution of signal in two dimensional space and carries only 

information of width and length. The Poincaréplots of similar SD1 and SD2 values can have completely 

different underlying temporal dynamics as shown in figure7 [16]. The complex correlation measure (CCM) is 

used to overcome this limitation. The CCM is used to quantify the temporal variation of the Poincaré plot. In 

addition, CCM is more sensitive to changes in temporal structure of the signal than SD1 andSD2. 

 

V. COMPLEX CORRELATION MEASURE 
The CCM evaluates point-to-point variation of a signal plotted in a Poincaréplot. Moreover, CCM is a 

function of multiple lag correlation of the signal [17]. The CCM computed in a windowed manner, which 

embeds the temporal information of the signal. A moving window of three consecutive points from the 

Poincaréplot is considered and the area of the triangle formed by these three points is computed. This area 

measures the temporal variation of the points in the window. If three points are aligned on a line then the area is 

zero, which represents the linear alignment of the points. Moreover, since the individual measure involves three 

points of the two dimensional plot, it is comprised of at least four different points of the time series for lag m = 1 

and at most six points in case of lag m ≥ 3. Hence, the measure conveys information about four different lag 

correlation of the signal. Now, suppose the i-th window is comprised of points a(x1, y1),b(x2, y2) and c(x3, y3) 

then the area of the triangle (A) for i
th

 window can be computed using the following determinant [17]: 

𝐴 𝑖 =
1

2
 

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

          

 

where A is defined on the real line ℜ and 

𝐴 𝑖 
= 0, 𝑖𝑓𝑝𝑜𝑖𝑛𝑡𝑠𝑎, 𝑏𝑎𝑛𝑑𝑐𝑎𝑟𝑒𝑜𝑛𝑎𝑠𝑡𝑟𝑖𝑔𝑡𝑙𝑖𝑛𝑒

> 0, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘 − 𝑤𝑖𝑠𝑒𝑜𝑟𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑒𝑝𝑜𝑖𝑛𝑡𝑠𝑎, 𝑏, 𝑎𝑛𝑑𝑐
< 0, 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒𝑜𝑟𝑖𝑛𝑎𝑡𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡𝑒𝑝𝑜𝑖𝑛𝑡𝑠𝑎, 𝑏𝑎𝑛𝑑𝑐

 

 

If Poincaréplot is composed of N points then the temporal variation of the plot, termed as CCM, is 

composed of all overlapping three points’ windows and can be calculated as: 

𝐶𝐶𝑀 𝑚 =
1

𝑆(𝑁−1)
  𝐴  (𝑖) 𝑁−2

𝑖=1         

 

where m represents lag of Poincaréplot. A(i) represents area of the i-th triangle. The length of major 

and minor axes of the ellipse are 2SD1, 2SD2, where SD1, SD2 are the dispersion perpendicular to the line of 

identity (minor axis) and along the line of identity (major axis) respectively.  

 

i. Sensitivity ToChanges In Temporal Structure 

Literally, the sensitivity is defined as the rate of change of the value due to the change in temporal 

structure of the signal. The sensitivity of CCM was analyzed in order to define how it was affected by increasing 

amount of change in temporal structure [15]. By increasing the number of replacement points the probability of 

the amount of change in temporal structure of time-series signal should be increased. At each step, number of 

replaced points is increased by 50. The SD1, SD2 and CCM of a RR interval signal are calculated by increasing 

number of replacing points at a time. For a selected number of replacing points, it should be shuffled the points 

for 30 times and calculated all descriptors each time after shuffling. Finally, the replaced values of descriptors 

were taken as a mean of the calculated values. Now the sensitivity of descriptors ∆SD1j, ∆SD2j and ∆CCMj 

was calculated using the next: 

∆𝑆𝐷1𝑗 =
𝑆𝐷1𝑗−𝑆𝐷10

𝑆𝐷10
× 100%        

∆𝑆𝐷2𝑗 =
𝑆𝐷2𝑗−𝑆𝐷20

𝑆𝐷20
× 100%        

∆𝐶𝐶𝑀𝑗 =
𝐶𝐶𝑀𝑗 −𝐶𝐶𝑀0

𝐶𝐶𝑀0
× 100%       

where SD10, SD20 and CCM0 were the parameters measured for the original data set without 

replacement and j represents the window number whose data was replaced. Moreover, SD1j, SD2j and CCMj 

represent the SD1, SD2 and CCM values respectively after replacement of j
th

 step. 
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Figure 7.Sensitivity of descriptors with changed temporal structure 

 

Figure 7 shows the sensitivity of all descriptors with change in temporal structure. ΔSD1, ΔSD2 and 

ΔCCM are calculated using the equations (5.27), (5.28) and (5.29). Value of ΔCCM is much higher than ΔSD1 

and ΔSD2, which indicates that CCMis much more sensitive than SD1 and SD2 to the changes in underlying 

temporal structure of the data. 

 

VI. THE MAZHAR-ESLAM ALGORITHM 
The Mazhar-Eslam [1, 18] algorithm uses Discrete Wavelet Transform (DWT) considering the merits 

of DWT over that of FFT. Although the FFT has been studied extensively, there are still some desired properties 

that are not provided by FFT. There are some points are lead to choose DWT instead of FFT. The first point is 

hardness of FFT algorithm pruning. When the number of input points or output points are small comparing to 

the length of the DWT, a special technique called pruning is often used [19]. However, it is often required that 

those non-zero input data are grouped together. FFT pruning algorithms does not work well when the few non-

zero inputs are randomly located. In other words, sparse signal does not give rise to faster algorithm. 

The other disadvantages of FFT are its speed and accuracy. All parts of FFT structure are one unit and 

they are in an equal importance. Thus, it is hard to decide which part of the FFT structure to omit when error 

occurring and the speed is crucial. In other words, the FFT is a single speed and single accuracy algorithm, 

which is not suitable forsensitive dependence (SED) cases. 

Moreover, the other reason for not selecting FFT is that there is no built-in noise reduction capacity. 

Therefore, it is not useful to be used. According to the previous ,the DWT is better than FFT especially in the 

SED calculations used in HRV, because each small variant in HRV indicates the important data and 

information. Thus, all variants in HRV should be calculated. 

The Mazhar-Eslam algorithm depends to some extend on Rosenstein algorithm’s strategies to estimate 

lag and mean period, and uses the Wolf algorithm for calculating the MVF (Ω𝑀) except the first two steps, 

whereas the final steps are taken from Rosenstein’s method. Since the MVF (Ω𝑀) measures the degree of the 

SED separation between infinitesimally close trajectories in phase space, as discussed before, the MVF (Ω𝑀) 

allows determining additional invariants. Consequently, the Mazhar-Eslam algorithm allows to calculate a mean 

value for the MVF (Ω𝑀), that is given by 

Ω𝑀
     =  

Ω𝑀𝑖

𝑗

𝑗
𝑖=1           

Note that the Ω𝑀𝑖
s contain the largest Ω𝑀𝐿  and variants Ω𝑀s that indicate to the helpful and important 

data. Therefore, the Mazhar-Eslam algorithm is a more SED prediction quantitative measure. Therefore, it is 

robust quantitative predictor for real time, in addition to its sensitivity for all time whatever the period.  

Apply the Mazhar-Eslam algorithm to the HRV of the normal case, it is found that the mean MVF 

(Ω𝑀
     ) as 0.4986 Hz, which is more accurate than Wolf (0.505 Hz) and Rosenstein (0.7586 Hz).Figure 8 shows 

the flowchart for calculating the Mazhar-Eslam MVF algorithm.  

First Start to select an initial condition. An embedded point in the attractor was randomly selected, 

which was a delay vector with dE elements. A delay vector generates the reference trajectory (nearest neighbor 

vector). Then another trajectory is selected by searching for the point that minimizes the distance to the 

particular reference point. After that the divergence between the two vectors is computed. A new neighbour 

vector was consideredas the evolution time was higher than three sample intervals. The new vector was selected 

to minimize the length and angular separation with the evolved vector on the reference trajectory. The steps are 

repeated until the reference trajectory has gone over the entire data sample. The divergence and Ω𝐿𝑖𝑠  are 

calculated. Consequently,theΩ𝑀  is calculated. 
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Figure 8. The flowchart of the Mazhar-Eslam algorithm. 

 

VII. Discussions 
The introduced MVF "Ω𝑀" divergence of initially SED nearby trajectories in state-space is coupled 

with folding of trajectories. To discriminate between stochaotic dynamics, periodic, and aperiodic signals, the 

MVF "Ω𝑀s" are often to be used as a qualitative measure of SED. The trajectories of stochaotic signals in state-

space follow typical patterns. Closely spaced trajectories converge and diverge exponentially, relative to each 

other. Therefore, the existence of a positive MVF  Ω𝑀 > 0  for almost all initial conditions in a bounded 

dynamical system is to be used for the deterministic stochaotic HRV cases. 

Table 3 shows the spectrum bands of the normal HRV and some cases from MIT-BIH database, using 

the three algorithms: Mazhar-Eslam, Wolf, and Rosenstein, used to compare the SED precision of the three 

algorithms in determining the MVF. 

It is worth to note that the introduced Mazhar-Eslam algorithm spectral analysis of the given HRV 

reveals three distinct frequency bands in the modulation of humans HRs. The first band is very low frequency 

(VLF) band in the range (0.01-0.05 Hz), the second band is low frequency (LF) band in the range (0.06 -0.15 

Hz) and the third band is a high frequency (HF) band in the range (0.16-0.50 Hz) as illustrated in figure 3. These 

results coincides with that mentioned in [20].   
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Table 3. The MVF results of different methods using normal case and MIT-BIH sample cases. 

Parameter  MVF 
S

er
ia

l Method 

Case  

Rosenstein Wolf  Mazhar-Eslam 

 
  

1 Normal 0.7586 (HF) 0.505 (HF) 0.4986 (HF) 

2 101 0.2500 (HF) 0.1700 (HF) 0.0830 (LF) 

3 102 0.1600 (HF) 0.1300 (LF) 0.0530 (VLF) 

4 104 0.2100 (HF) 0.1300 (LF) 0.0700 (LF) 

5 106 0.2300 (HF) 0.1500 (LF) 0.0770 (LF) 

6 107 0.2000 (HF) 0.1300 (LF) 0.0667 (LF) 

7 109 0.2200 (HF) 0.1400 (LF) 0.0733 (LF) 

8 111 0.2400 (HF) 0.1600 (HF) 0.0800 (LF) 

9 112 0.2400 (HF) 0.1700 (HF) 0.0800 (LF) 

10 115 0.2800 (HF) 0.1700 (HF) 0.0930 (LF) 

11 117 0.2300 (HF) 0.1600 (HF) 0.0770 (LF) 

12 118 0.2500 (HF) 0.1600 (HF) 0.0833 (LF) 

13 119 0.2700 (HF) 0.1700 (HF) 0.0900 (LF) 

14 121 0.2500 (HF) 0.1600 (HF) 0.0840 (LF) 

15 122 0.2300 (HF) 0.1600 (HF) 0.0770 (LF) 

16 123 0.2300 (HF) 0.1500 (LF) 0.0770 (LF) 

17 124 0.2500 (HF) 0.1700 (HF) 0.0840 (LF) 

18 200 0.2300 (HF) 0.1500 (LF) 0.0770 (LF) 

19 203 0.2300 (HF) 0.1500 (LF) 0.0770 (LF) 

20 212 0.2100 (HF) 0.1400 (LF) 0.0700 (LF) 

21 221 0.2100 (HF)  0.1400 (LF) 0.0700 (LF) 

22 230 0.2100 (HF) 0.1400 (LF) 0.0700 (LF) 

23 231 0.2200 (HF) 0.1500 (LF) 0.0740 (LF) 

* HF  high frequency, LF low frequency, and VLF very low frequency. 

 

The new measure high frequency error is calculated as 

𝐻𝐹𝑒𝑟𝑟𝑜𝑟 (𝑟𝐻 =
𝐻𝐹

𝑡𝑜𝑡𝑎𝑙
)         

Therefore, the high frequency error rH for MVF algorithms shown in Table 3 are 

1. Rosenstein 𝑟𝐻𝑟
=  

23

23
× 100% = 100% 

2. Wolf  𝑟𝐻𝑊
=  

11

23
× 100% = 47.83% 

3. Mazhar-Eslam𝑟𝐻𝑀
=  

1

23
× 100% = 4.34% 

The figure 9 shows the bar diagram of the high frequency error. 

 

 
Figure 9.High frequency error of MVF. 
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By reference to MIT-BIH arrhythmia database medical records, it is found that the cases in Table 3 are 

critical cases as shown in figure 11. Some cases have Ventricular ectopy like 102, 104, 106, 107, 109, 119, 123, 

221, and 231 as seen in figure 12, and some of these cases have Supraventricular ectopy like 111, 112. In 

addition, some of these cases in Table 3 have both Supraventricular ectopy and Ventricular ectopy like 118, 124, 

200, and 203. The Ventricular ectopy and Supraventricular ectopy lie in the HRV low frequency band, because 

of their MVF is low. Table 3 shows that the Mazhar-Eslam algorithm for MVF Ω𝑀
      is more precise than Wolf 

and Rosenstein algorithms. Also, the Mazhar-Eslam algorithm shows that the selected cases from MIT-BIH are 

in the low frequency range as its spectrum variation indicate (Ω𝑀 < 0.16 Hz). The Wolf algorithm has less 

precision than Mazhar-Eslam algorithm. Wolf observed incorrect band for cases 111, 112, 115, 117, 118, 119, 

121, 122, 124, and 231 because they are not in the high frequency band as it shows but they are in the low 

frequency band as mentioned before. The worst and imprecise algorithm is Rosenstein as it shows all cases in 

the high frequency band. Thus, the Mazhar-Eslam is a recommended algorithm for HRV analysis. 

 

 
Figure 10. The MVF diagnosis diagram for ventricular and supraventricular 

 

 
Figure 11. The MVF of the given cases. 

 

 
Figure 12. The MVF for ventricular cases 
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VIII. CONCLUSION 
Heart Rate Variability (HRV) is reported in several cardiological and non-cardiological diseases. Also, 

it has a prognostic value and is therefore very important in modelling the cardiac risk. The HRV is a stochaotic 

signal that remains highly controversial. In order to have utmost importance, HRV needs a sensitive measure to 

analyse it. It is concluded that Mazhar-Eslam variability mean frequency (MVF), is a versatile and more precise 

qualitative SED measure of HRV sensitivity than others. The Rosenstein algorithm provided less sensitive 

𝑀𝑉𝐹estimates than the Wolf algorithm to capture differences in local dynamic stability from small gait data 

sets. The data supported the idea that this latter outcome results from the ability and inability of the Wolf 

algorithm and Rosenstein algorithm, respectively, to estimate adequately MVF of attractors with an important 

rate of convergence as those in gait.  

Therefore, the Mazhar-Eslam algorithm appears to be more qualitative and appropriate to evaluate 

local dynamic stability from small gait data (SED) sets like HRV. Increase in the size of data set has been shown 

to make the results of the Mazhar-Eslam algorithm more suitable, although other means as increasing the sample 

size might have a similar effect. The Mazhar-Eslam algorithm uses the merits of the Discrete Wavelet 

Transform (DWT) instead of Fats Fourier Transform (FFT) unlike Rosenstein and Wolf. The Mazhar-Eslam 

algorithm cares for all SED variants especially the small ones like that are in HRV. These SED variants may 

contain many important data to diagnose diseases as R-R interval has many SED variants. Thus, the Mazhar-

Eslam algorithm for MVF (Ω𝑀
     ) taking determination all of Ω𝑀s is characterized by its high SED robust nest, 

and precise qualitative predictor. The Mazhar-Eslam algorithm presents a new chapter for HRV diseases 

diagnosis.  It contains a positive part for HRV as it is stochaoticsignal.The next Table 4 discusses the sensitivity 

and accuracy of MVF algorithms as it is clear the Mazher-Eslam is the best MVF algorithm for HRV. 

 

Table 4.  SED of MVF algorithms. 
Cases No. Mazher – Eslam (M-E) Wolf (W)        Rosenstein (R)      SED 

112, 101, 124, 119 and 115 0.0800, 0.0830, 0.0840, 0.0900, 

0.0930 

        0.1700 0.2400, 0.2500, 2500, 

2700, 2800 

ME< W>R 

102, 107 and 104 0.0530, 0.0667, 0.0700         0.1300 0.1600, 0.2000, 02100 ME< W>R 

117, 122, 111, 118 and 121 0.0770, 0.0770, 0.0800, 0.0833, 

0,0840, 

      0.1600 0.2300, 0.2300, 

0.2400, 0.2500, 0.2500  

ME< W>R 

212, 221, 230 and 109 0.0700, 0.0700, 0.0700, 0.0733         0.1400 0.2100, 0.2100, 
0.2100, 02200 

ME< W>R 

231, 203, 200,123 and106 0.0740, 0.0770, 0.0770, 0.0770, 

0.0770 

        0.1500 0.2200, 0.2300, 

0.2300, 0.2300, 0.2300 

ME< W>R 

 

The Poincaréplot is another sensitive and accurate technique that can be used for analyzing and 

predicting HRV. The Poincaréplot is a powerful and sensitive tool. It depends on statistical calculations. The 

plot and calculations represent the healthy case by a large ellipse area and very small for critical diseases cases. 

The Poincaréplot needs a suitable period to analyzing HRV. The recommended period lies between 5 and 20 

minutes. Although, the Poincaréis sensitive and useful tool for HRV visual pattern, it has limitation. This 

limitation comes from limitation of standard descriptors SD1 and SD2. For avoiding this limitation, the complex 

correlation measure CCM is used. As the theoretical definition of CCM it is clear that the correlation 

information measured inSD1 and SD2 is already present in CCM. However, this does not mean that, CCM is a 

derived measure from existing descriptors SD1 and SD2. CCM can be considered as an additional measure 

incorporating information obtained in SD1 and SD2. CCM is based on the autocorrelation at different lags of the 

time series hence giving an in-depth measurement of the correlation structure of the plot. Therefore, the value 

of CCM decreases with increased autocorrelation of the plot. In arrhythmia, the pattern of the Poincaré plots 

becomes more complex. 
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